If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1d^2+6d+1=0
We add all the numbers together, and all the variables
d^2+6d+1=0
a = 1; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·1·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{2}}{2*1}=\frac{-6-4\sqrt{2}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{2}}{2*1}=\frac{-6+4\sqrt{2}}{2} $
| 2=2y/3 | | 11n+40=3n | | Y=166x-x^2 | | 0.59=3.2(4-n) | | 4(2x-1)=6x+20 | | n+134.5=–2.4 | | 36=-10x-4 | | x+2Z=180 | | 9+v/5=12 | | F(-8)=-5x+3 | | 2x+-6=2x+-4 | | 9+x/2=5 | | (8,-5);m=-1/8 | | 5(10+a)=40 | | 4d+(-8=-24 | | 3n^2+16n+14=0 | | 2x(x+30)=64 | | 36=-4-10p | | 44=-10x+4 | | (-1,4);m=-1 | | 2p-16=-8 | | 25=4p-3 | | 45+15h=120;h= | | 66·146+66·33=(146+t)·66 | | 0=7x-14x^{0.5} | | 1z^2-2z-12=0 | | 5x+10+70+9x+2=180 | | 16=-32-8x | | -20.5x-1=0.50x+5 | | 26(1/x)=13 | | 6u–8.2=1.9u | | (7x+1)+(19x–18)+(10x–9)=180 |